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An integral transform is derived which, for a system of stars characterized as a spherical equilibrium
solution to the collisionless Boltzmann equation of general relativity, allows the reconstruction of a two-
integral distribution function from moments of that distribution. Specifically, given a knowledge of the
energy density p(7) and some constraint on the radial and tangential pressures P (r) and P(r), a two-
integral distribution f(E,J?) consistent with these moments can be computed as a contour integral in
the complex plane. This prescription constitutes a straightforward generalization of a transform for the
corresponding Newtonian systems developed recently by Qian and Hunter. It also generalizes earlier
work by Fackerell for relativistic systems characterized by a one-integral distribution function, f,(E).
This transform has potential applications for the modeling of dense galaxy cusps surrounding supermas-
sive black holes, an enterprise that has recently assumed increased importance in view of high resolution

photometry facilitated by the Hubble Space Telescope.

PACS number(s): 05.20.Dd, 04.20.Jb, 98.10.+z

I. INTRODUCTION AND MOTIVATION

In a variety of different contexts, astrophysicists are in-
terested in modeling systems of stars or other objects as
solutions to the so-called collisionless Boltzmann equa-
tion [1]. In the context of Newtonian mechanics this en-
tails a consideration of the gravitational Vlasov-Poisson
system, which tracks the evolution of a one-particle dis-
tribution function f in a gravitational potential @, the
form of which is determined self-consistently by f itself.
Alternatively, in the context of general relativity this en-
tails a consideration of the Vlasov-Einstein system, which
tracks the evolution of a covariant one-particle f in a
space time (M, g,, ), with an Einstein tensor G’[g] deter-
mined self-consistently by the stress-energy tensor T,f’ as-
sociated with f.

The Vlasov-Poisson system is the starting point for
much work in galactic dynamics and cosmology. Howev-
er, under certain circumstances the system of interest
may be so dense, and/or the velocities of the objects in
question so large, that the Newtonian description must be
superceded by a fully relativistic treatment. Thus, in par-
ticular, over the years substantial attention has focused
on models of ultradense galactic nuclei [2], both as ob-
jects in their own right and as potential progenitors for
supermassive black holes.

It is well known, both Newtonianly and in general rela-
tivity [1], that equilibrium solutions f, to the collisionless
Boltzmann equation can be constructed by specifying
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more or less arbitrary, albeit normalizable and non-
negative, functions of the energy E and other single-
valued constants of the motion. Given any such f, one
can compute quantities such as the number density, ener-
gy density, and pressure as integrals of the distribution
function. However, this is an intrinsically nonlinear pro-
cedure since the integrals themselves involve a knowledge
of @ (or g,,), a quantity related to the mass density p (or
stress energy T'?) by the gravitational field equation.

Both for this reason and to facilitate direct comparison
with observed luminosity and/or velocity distributions, it
is also useful to work the other way around. Specifically,
given such moments of the distribution as the number
density or pressure, one would like to determine the form
(or forms) of the equilibrium distribution f,. This is
especially important given the recognition that, in gen-
eral, there is no guarantee that any given p or Tab can be
generated from a distribution function f, which is every-
where non-negative or that such an f, even if it exists, is
unique.

It has long been known [3] that, for spherical Newtoni-
an systems characterized by an isotropic distribution of
velocities (or momenta), there exists a simple prescription
to pass from the density p(r) to a uniquely determined
equilibrium f,, although this f, is not always guaranteed
to be positive semidefinite. The assumptions of spherical
symmetry and isotropy imply that, generically, the
(mass-averaged) distribution function will depend on only
one constant, namely, the conserved energy E. The cru-
cial point then is that the defining relation for p(r) as an
integral of f,(E) is easily converted to an Abel equation
which can be inverted trivially. The explicit form of
fo(E) is reduced thereby to a quadrature, provided that
the radial coordinate r can be written explicitly as a
single-valued function of ®, so that the mass density and
pressure can be viewed as functions of ®, i.e., p=p(P)
and P =P (D).
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As demonstrated by Fackerell [4], the same game can
also be played in general relativity. Provided that the
system is static and spherically symmetric, and that, as
measured in every local orthonormal frame, the distribu-
tion of three-momenta is isotropic, one can infer generi-
cally that the distribution f, is again given as a function
of a single constant E. In this case, £ denotes the con-
served energy associated with the time translation sym-
metry.

If the highly restrictive assumptions of spherical sym-
metry and isotropy are relaxed, the analysis becomes
much harder since, in general, one will be dealing with
equilibria that admit two or more constants of the
motion. However, despite these difficulties, over the
years a number of different generalizations have been for-
mulated appropriate for Newtonian systems [5]. In par-
ticular, Hunter and Qian [6] have recently developed a
powerful technique, involving a double Mellin transform,
which allows one to deal with a large class of axisym-
metric equilibria. This involves passing between an equi-
librium f,(E,J,), depending on both the energy E and
the azimuthal angular momentum J,, and an axisym-
metric density p(@,z), where z denotes distance along the
symmetry axis and &@=(x2+y?2)!”2. The only significant
restriction on the allowed equilibria is that the partial
derivatives d®/93z and 3d®/d@ both be monotonic, so
that the density p can be viewed as a function of ® and @,
ie.,, p=p(®,»). More recently, Qian and Hunter [7]
have shown that their analysis of axisymmetric systems
can also be adapted to anisotropic spherical equilibria.
These systems involve equilibrium distributions f, de-
pending on two conserved quantities, namely, the energy
E and the square of the total angular momentum, J2.

A generalization of the Abel transform technique to
anisotropic spherical equilibria is important in view of
the theoretical expectation that many systems of stars,
even those which are seemingly well approximated as
spherically symmetric, may be characterized by
significantly anisotropic velocity distributions. This is,
for example, the case for dense stellar systems such as
globular clusters or galactic cusps which have undergone
significant two-body relaxation: Numerical Fokker-
Planck integrations indicate that, as a result of this relax-
ation, a nearly isotropic stellar system could develop a ve-
locity distribution which is significantly anisotropic [8].
However, this suggests that if, as has been argued by
some [9], dense relativistic systems evolved to their
current state as a result of a gravothermal catastrophe
triggered by binary relaxation [10], they should be
characterized by velocity distributions that are far from
isotropic. Two integral distributions could prove espe-
cially important for systems such as galactic nuclei con-
taining supermassive black holes, since there is substan-
tial evidence from N-body simulations [11] that the
centers of systems containing such black holes can evolve
significantly anisotropic velocity distributions.

The importance of two-integral models has increased
recently because of high resolution observations of galax-
ies, provided by the Hubble Space Telescope [12], which
permit the possibility of much more detailed modeling
than had been feasible in the past, especially for the dense

innermost regions which could contain supermassive
black holes. Using nonparametric techniques [13], it
seems possible to fit almost all the data to isotropic spher-
ical equilibria. However, it is clearly important to inves-
tigate whether anisotropic models can provide equally
good, or yet better, fits.

The objective of this paper is to demonstrate that the
Newtonian algorithm of Qian and Hunter can be refor-
mulated in a relativistic context to facilitate the construc-
tion of anisotropic distribution functions, f,(E,J 2), for
specified forms of the stress-energy tensor. Section II ex-
hibits the basic equations of relativistic stellar dynamics
in a form appropriate for a spherical system character-
ized by an anisotropic distribution of velocities, and then
shows how, in the isotropic limit, it is easy to express
fo(E) as an integral of the energy density or the pressure.
Section III shows that, as for the Newtonian case, one
can derive an integral equation relating f,(E,J?) to a
spherically symmetric density which is viewed abstractly
as a function of two variables, namely, the radial coordi-
nate r and a metric function e”, the latter replacing the
Newtonian potential ®.

II. THE BASIC EQUATIONS OF STRUCTURE

The objects of interest here are equilibrium models for
relativistic systems of nearly point mass objects, charac-
terized as time-independent, spherically symmetric solu-
tions to the collisionless Boltzmann equation, i.e., the
Vlasov-Einstein system. These solutions involve a one-
particle distribution function f,(x%p,) defined covari-
antly in the cotangent bundle associated with the space-
time manifold. The evolution of f, is determined by
conservation of probability, which says that f, is con-
served under transport along geodesics in a space-time
metric g, (x¢), the form of which is determined self-
consistently from the stress-energy tensor T;’ associated
with f, itself. Thus, explicitly, assuming geometric units
with G =c?=1,

0
dx?

9
ap,

PvPc 3g”
2m xa”*

Py ~0, (1)
m

where the metric g,,(x°¢) is determined by the Einstein
equation

Gllg)=8nT?, )

with
b
T,f(x“)=f(—g)”l/2d4p&ln—f—f* . 3)

In Eq. (3), the integral is effected in the local cotangent
space (i.e., momentum space) at the space-time point x°.
Equation (1) can be viewed as deriving from the Hamil-
tonian H =1 g“bp,,p,,, a conserved quantity which is
equal numerically to the particle mass m [14]. In deriv-
ing and interpreting Eq. (1), one must view x? and p, as
the basic variables, so that, e.g., p’=g%p, and
m= gabpapb‘

For notational simplicity, it will be assumed in the fol-
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lowing that all the particles being described have the
same rest mass, so that

f*(xa’pa):f(xa:pa )BD(m —m*) ’ ()

where &, denotes a Dirac delta restricting the support of
f . to the mass shell hyperboloid. This entails no loss of
generality since all the manipulations performed below
can be effected equally well for a mass-averaged distribu-
tion function if more than one mass species is assumed to
exist. The case of an isotropic distribution of three-
momenta with unequal masses was considered explicitly
in [4]. For further computational simplicity, it will also
be assumed that units are so chosen that the rest mass
m=1.

Given the assumption of a spherical equilibrium, it is
convenient to introduce Schwarzschild coordinates [15].
This leads to a diagonal line element of the form

ds?=evdt?>—e*dr?—r%(d 6% +sin%0d ¢?) , (5)

where the metric functions e and e’ are functions of r,
independent of the coordinate time ¢. One convenient
feature about this choice of coordinates is that the stress
energy associated with the equilibrium f is necessarily
diagonal. The assumption of a spherically symmetric
equilibrium implies generically that the distribution func-
tion f, will be given as a function of two conserved quan-
tities (so-called isolating integrals), namely, E and J2
Here E =p, is the conserved energy associated with time
translation symmetry, i.e., the existence of a timelike
Killing field. J>=p§+p2 /sin®0 is the squared angular
momentum, a conserved quantity associated with the
three rotational Killing fields.

The fact that f,=f,(E,J?) implies further that
T3=T$, so that only three of the four nonvanishing
components of T can be unequal. Similarly, it follows
that the number current,

_ p
Na:f(__g) 1/2d4p;af* , (6)

only has one nonvanishing component, namely, N,. Ex-
plicit computation then reveals that the energy density

p(r)=—THr)
=2me = [dJ? [ dE fy(E,JOKE> ™2, (1)
the radial pressure
Pr(N=T}(r)=2me " [dJ? [ dE fo(EJHK ~'r 72,
(8)
the tangential pressure
Pr(r)=TY(r)
=T%(r)=me ¥ [ J%dJ? [ dE fo(E,JHKr~*, (9)
and the number density
e"*n(r)=—N,(r)

=2me /2 [ dJ? [ dE fo(E,J})KEr %, (10)
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where
K=(E% V—1—r g3~ 172 (11)

In each case, the integrations extend over intervals
defined by the inequalities

J?>0 and (E% "—1—r"2J%)>0. (12)

The collisionless Boltzmann equation implies a purely
hydrodynamic description, defined in configuration
space, that can be formulated and solved without explicit
reference to the phase space distribution f(E,J?). This
description involves three different matter variables,
namely, p(r),Pg(r), and Py (r), each generated as a mo-
ment of the Vlasov equation, that are coupled to gravity
by the metric function e*”, which plays the role of the
Newtonian potential ®. The matter variables, which are
related via some generalized equation of state, satisfy a
relativistic analog of the Euler equation, which can be de-
rived by analogy with the Jeans equation of Newtonian
galactic dynamics. The metric function e*” or,
equivalently, v(r), satisfies an anisotropic generalization
of the Oppenheimer-Volkoff equation which itself gen-
eralizes the Newtonian relation d®/dr=—m(r)/r
The remaining metric function e™” is better viewed as an
auxiliary variable which is readily eliminated from the
structure equations.

Geometrically, the desired Jeans equation corresponds
to the radial component of the relation

95V, T=0,, (13)
with
9ap —8ab " UalUp > (14)

which yields the projection of the energy conservation
equation orthogonal to the flow associated with the four-
velocity u? More physically, perhaps, it can be derived
directly from the Vlasov equation: Multiply Eq. (1) by p,
and then perform a momentum space integration d‘p.
Assuming appropriate falloff conditions for large momen-
ta, the second term can be integrated by parts with the
vanishing surface term. By both multiplying and divid-
ing by V' —g one then infers that
9 . — 1 9g? —
axa\/—gT{,’+E aibV—~chd=O, (15)
with T? given by Eq. (3).

The angular components of this equation lead to the
trivial identity 0=0, a consequence of the assumption of
a spherically symmetric configuration. Similarly, the
temporal component is trivial because of the assumption
of time translation symmetry. However, the radial com-
ponent does have nontrivial content. Specifically, by
evaluating the derivatives of the metric functions and re-
placing T? by the appropriate matter variables, one ob-
tains the desired Jeans equation,

dPg | 2 __1 dv
+ (PR PT)_ 2(p+PR)dr . (16)

dr r

The desired source equation for dv/dr follows immedi-
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ately from the G} and G; field equations [15]. The G/
equation, which expresses T/ in terms of A and r, can be
solved to give

e h=1— 21 (17)
r
where
m (r=4x [dr rip(r) . (18)

But, by combining Eq. (18) with the G/ equation, which
expresses T, in terms of A, v, and r, one is led to the
desired relation

dv _ 2(m +47Pgr?) 19)
dr  r(r—2m) )

The other nonvanishing components of the Einstein
equation, GS and Gﬁ, are redundant. As is well known
[15], they follow from the other field equations by virtue
of the Bianchi identity, but the Bianchi identity is
equivalent to the energy conservation equation used in
deriving Eq. (16).

Considering only the hydrodynamic variables, one is
confronted with a system of two equations—the Jeans
equation and the source equation—for four unknowns,
namely p, Py, Py, and v. It is thus clear that, without
imposing any additional restrictions, there is an enor-
mous amount of freedom in the construction of solutions.
Indeed, what is required is some generalization of an
equation of state to obtain a closure condition.

For the special case of a system characterized at each
point in space by an isotropic distribution of three-
velocities, the distribution function f, can depend only
on the energy E. It follows that the pressure tensor must
also be isotropic, with Py =P;=P. In a hydrodynamical
description, one is thus reduced to three unknowns for
two equations, but some freedom still remains. It there-
fore seems reasonable to impose an additional condition,
e.g., by specifying p explicitly as a function of r.

Given some p(r), one is reduced finally to a system of
two equations in two unknowns, for which, at least in
principle, a general solution can be derived. The only
question is whether this solution set {p,P,v} is consistent
with an acceptable distribution function f, i.e., whether
the given p(r) can be generated from some isotropic
folE). Since such a construction would involve a map-
ping between one function of one variable and another
function of one variable, one might expect (1) that an
fo(E) does exist and (2) that this fy(E) is unique, al-
though there would be no reason a priori to expect that
this f,(E) is physically acceptable, e.g., positive
semidefinite.

In fact this expectation is true: Assuming that e¢” and
e’ are both strictly positive, it follows from Egs. (17) and
(19) that de”/dr > 0, so that e" is a monotonic function of
r. However, given that e is monotonic in 7, so that p and
P can be viewed as functions of e”, one can manipulate
the equations for p(r) or P(r) to yield fy(E) as an in-
tegral over the specified matter variable. To see this,
define rescaled distribution functions
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gp(g)zzﬂ_é—l/Zfo(él/Z) ,

FplE)=2aE" 121 (£172) (20
and rescaled matter variables

G,(b)=b’p(b) and Gp(b)=b’P(b), 1)
where

E=E? and b=e". (22)

With these redefinitions, it follows trivially that the in-
tegral equations for p and P can be rewritten as

1
Gy (b)= [ F(ENE—b)'dE,

1 (23)
Gp(b)= fb Fp(ENE—D)2dE .
Suppose now that the system of interest has a smooth
outer boundary, so that surface terms can be neglected
with impurity. In this case, one can differentiate the p
equation once and the P equation twice to obtain

1 Cpv—1/29e— _ 1 8Yp
J, PO E—b) T PdE=— o — B =7 ,(b)
and
1 _ 4 d*Gp _
S, FrlENE—b) " 2dE=1 pr =Tpb) .4

However, each of these is an Abel integral equation for
J;, which, neglecting surface terms, admits a solution of
the form

1. d b _ _e—1/2
Fi(£) ﬂdé_fgdbj,(b)(b £, (25)

with i =p or P. The transform in terms of P was first for-
mulated by Fackerell [4]. However, the p transform is
the more direct generalization of the transform of the
Newtonian mass density originally identified by Ed-
dington [3].

For an anisotropic pressure tensor, the situation is
more complicated. In this case, one has four unknowns
but only two equations, so that two conditions are re-
quired to get a closed hydrodynamic system. The obvi-
ous question, then, is whether the closure conditions are
consistent with a distribution function f,(E,J?). The key
point here is that, since f;, now depends on two variables,
it would seem reasonable to expect that one can in fact
impose two nontrivial restrictions on the moments of f.
The procedure described in Sec. I1I, based on the work of
Qian and Hunter [6,7], shows that this is in fact the case.

III. THE INTEGRAL TRANSFORM

Since the physical density p is a function of only one
coordinate, namely, r, it is not reasonable to expect that
it can be used by itself to compute a uniquely determined
two-integral f,(E,J?). Rather, to obtain an integral
equation for f, one really needs somehow to specify a
function of two variables. This was first done Newtoni-
anly by Dejonghe [16] through the introduction of a so-
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called augmented density, using a prescription which ad-
mits a completely straightforward relativistic generaliza-
tion.

In the context of general relativity, the starting point is
the definition of augmented densities and pressures,
p(b,r), Pr(b,r), and P,(b,r) via the integrals (7)-(9), as-
suming that the hydrodynamic equations have not been
imposed, so that b =e" is not yet a known function of r.
Once the hydrodynamic relations are imposed, these aug-
mented quantities reduce to functions of a single variable,
which can be taken to be either b or r, or some combina-
tion thereof, but in general they define perfectly accept-
able functions of two independent variables.

One crucial feature about these augmented quantities is
that they are related to one another by simple differential
equations. Thus, in particular, it is easily verified that the
radial and tangential pressures can be generated explicitly
from a knowledge of the energy density p. Indeed,
differentiation of Egs. (7)—(9) leads to the simple relations

b1/2%b1/2PR(b’r)=__;:p(b’,ﬂ) (26)
and
bx/zaibbl/sz(b’r):_%—E)—%rzp(b,rz). 27
r

Note parenthetically that this implies a simple expression
for the difference between the radial and tangential pres-
sures, namely,

r? 3
2 ar?

The specific objective of the remainder of this section is
to derive an expression for f(E,J?) in terms of a contour
integral involving the augmented density p(b,r?).
Different choice of p(b,r?) corresponding to the same
physical density will in general yield different two-
integral distributions fo(E,J?), this reflecting the fact
that more than one f,(E,J?) corresponds to the same
physical p(r). However, Egs. (26) and (27) imply that
different chains of augmented density correspond to
different choices of radial and tangential pressure, so that
the different distributions f,(E,J?) correspond simply to
different choices of Py (r) and P4 (r).

If the limits of integration are written explicitly in the
integrals of Eq. (7), it follows that, in terms of the vari-
ables £ and J?2,

r2 -
w2 f ldg [T

b1/2_a_

172 2
b b [Pgr(b,r?)

—Py(b,r?)]= p(b,r?) . (28)

é—l/ZfO(é—,JZ)
rVrAE/L —1)—TF

p(b,rt)=

(29)
Now introduce a new, transformed density p satisfying

2 2
,3(b,R2)=ifR dr?— L) (30)
w 4]

VrR =

If one inserts p(b,7?) into Eq. (30) and rearranges the lim-
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its of integration in the (J2,72) plane, the dr? integration
can be performed explicitly, leading to the relatively sim-
ple expression

é«l/Zfo(g,JZ)

b6, R) =7 ['d e hgpes Jots
f gf V2

(31

This relation can be simplified yet further through the
identification of new radial coordinates satisfying

s2=b"4? and S?=b"'RZ. (32)

For 5%, and hence S?, to serve as a satisfactory radial
coordlnate, it must be true that the derivative
ds?/dr?>0, so that the mapping from 2 to s? is one to
one. This is in fact a nontrivial condition, equivalent to

j—rdv o, (33)

or, from Eq. (19),
r>3m(r)+4mPgr? . (34)

However, this restriction does not seem unreasonable,
given the recognition that, at a radius » for which
(r/2)(dv/dr)=1, the gravitational field is so strong that
a circular orbit will have an infinite energy, i.e., E>— oo.

That this is the case is easy to see. The mass shell con-
straint implies that, for an orbit with dr /d =0,

2 v J2 | _
E“=e 1+‘2“ =V(r), (35)
¥

but the condition 3V /dr =0 then yields

(36)

With the introduction of the new coordinate S?, the
augmented density p is to be viewed as a function of b
and S?, so that Eq. (31) takes the form

b2p(b,S*)=G (b,S?%)
_7 ol se-b 5 &2 fol&I?)
S fbdgfo dJ - 37)

Differentiation with respect to b then yields a simple,
single-integral equation, namely,

G ( bS) fdggmfo@S (E—b))
VE—b ’
This expression is very similar to the Newtonian rela-
tion obtained by Qian and Hunter [7]. Indeed, by writing

b=142d, £=1+426, F(6E,J)=EV2f(,J?)
(39)

(38)

where & and ® are the new independent variables and F
is the rescaled distribution function, one finds that Eq.
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(38) reduces to

3G (,5?) 5 _ 0, F(8,8(E—b))
—— 0 = 9V s 2 =7
3 2 wad)d(? v (40)

This is essentially the same as the integral equation for-
mulated by Qian and Hunter, the only differences being
(1) that their basic variables were the relative energy and
potential, —& and —®, and (2) that they close to intro-
duce explicitly the value of the potential at the edge of
the matter configuration.

Noting that the relativistic description introduces no
new poles or branch cuts, an analysis analogous to that
presented in Hunter and Qian [6] can thus be used to in-
vert Eq. (40). Thus, in particular, if the augmented densi-
ty G (b,S?) is analytic in b in a suitable region in the com-
plex plane, one infers that F(E,J?) can be expressed as a
contour integral of the form

JZ
T 2AE—D)

(41)

1 9 o do

F(&,JH)= —_——
T = v 36 o Ve—a

G, |®

In this equation, the integration contour corresponds to a
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loop in the complex ® plane running along the real ®
axis to the right of the branch point at ®=§&. The quan-
tity G; denotes a derivative of G with respect to the first
argument, i.e., neglecting the dependence on @ arising
because the second argument also has some @ depen-
dence. If one restores the “natural” variables & and b,
this becomes instead

1 98 1 db J?
F(&J)=—+— ——G, |b, 42
] 272 9E f,,_ VE—b | (E—b) “2)
where, explicitly,
F(£,J)=EV2f,(E,J%) . (43)

Here the contour is a loop in the complex b plane run-
ning along the real axis to the right of the branch point at

Translating from S?2 back to the old radial coordinate
R?, and thus viewing G as a function of b and R?, Eq.
(38) takes the form

dG (b,R?*) , R* 3G (b,R?) _
db b 3R>2

and the final integral relation becomes

f §F—(§—, (44)

1 3 1 db bJ? bJ*?
F(6,J%)= — |, —— b, + G, |b,
2w o€ 4o vE=s |9 P e—w | b (E—b) “3
where, now, G, and G, denote, respectively, derivatives agree when b is viewed as a function of r? ie.,
with respect to the first and second arguments.
The final relation (45) does not involve the derivative Pg(b,r2)#P(b,r?) but Pg(r)=P,(r). 47)

3S2/dR? explicitly, so that one might anticipate that it
remains valid even if S? is not a monotonic function of
R?2. This may in fact be true. However, the analyticity
properties of p(b,R?) and p(b,S?) differ when S? is not
monotonic, and any justification of Eq. (45) will depend
upon the details of precisely how the analyticity proper-
ties of p are changed.

The isotropic limit of the two-integral formalism de-
scribed here is easily understood. If one imposes the con-
straint that the augmented radial and tangential pressures
are equal, it follows from Eq. (28) that the augmented
density p(b,7?) is in fact a function only of . Consistent
with Egs. (26) and (27) one can then assume that the aug-
mented P and P also depend only on b. Given, howev-
er, that p, Pg, and P, are functions only of b, one is re-
duced immediately to the isotropic case, with the pres-
sure Py = P = P satisfying

b—=——(p+P), (46)

which is equivalent to the isotropic version of the Jeans
equation (16).

It is also possible to choose augmented pressures Py
and P, which, albeit unequal, have the property that they

Such a choice of augmented pressures corresponds to an
augmented p which exhibits a nontrivial dependence on
both b and r? and thus, according to Eq. (45), implies an
anisotropic two-integral f,(E,J 2). In other words, at
least in principle one can have an anisotropic distribution
fo(E,J?) which leads at each point in space to an isotro-
pic pressure tensor, with P, =P, =P.

One final point should be made. To facilitate direct
contact with observations one might like to formulate an
analog of Eq. (45) involving the number density n, rather
than the energy density p. This, however, seems prob-
lematic. The hydrodynamic equations provide concrete
relations among the quantities p, Py, Pr, and v, so that,
given a knowledge of p(r) and some constraint connect-
ing Pg(r) and Pr(r), one can determine v(r) and the ex-
plicit form of Pg(r) and P,(r) without solving for
folE,J 2). However, a knowledge of these matter vari-
ables is not sufficient to determine the form of the num-
ber density n. Only after solving for fy(E,J?) can n(r)
be computed explicitly. Related to this is the fact that,
although one can define an augmented density n (b,r?),
this augmented n cannot be related to the augmented p,
Py, and P, via any simple analog of Egs. (26) and (27).
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In principle, one could perhaps specify n (#) and v(r) as
given functions and then proceed to define an augmented
density » (b,r?) which could be manipulated to derive an
analog of Eq. (45). However, the augmented n (b,7?) is
not easily related to the other matter variables, so that
the assumed splitting into b and r? is not constrained in
any obvious physical way.
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